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1.5 Absorption and Emission
The classical oscillator model
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Many spectral features can very well be described by classical 
dispersion theory (for example the dispersion relation at the 
transition frequency, the behavior of free electrons, plasmons, 
absorption and potentially emission. (We could add phonons, 
that we have not discussed here). 
However, we were not able to make any prediction about the 
strength of the absorption. Also we are not sure about the 
lifetime of an excited state:
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Absorption from a quantum mechanical point of view:
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Example of a two level system:
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The quantum mechanical approach
The strongest interaction of a photon with an atom, molecule or solid is the interaction of the photon electric 
field 𝐸𝐸 with the electric dipole moment of the object. The energy of this interaction is given by �H′ = 𝜇⃗𝜇𝐸𝐸, the 
potential energy of an electric dipole in the electric field 𝐸𝐸.
To calculate the transition probability of a simple two level system from an initial state with energy 𝐸𝐸𝑖𝑖to a final state 
with energy 𝐸𝐸𝑓𝑓 the Schrödinger equation is solved using perturbation theory.

�𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝐻𝐻0 + �𝐻𝐻′𝑖𝑖ℏ
𝜕𝜕
𝜕𝜕𝑡𝑡
Ψ = �𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡Ψ and �𝐻𝐻′ = 𝜇⃗𝜇 � 𝐸𝐸(𝜔𝜔, 𝑡𝑡)

Ansatz:  Ψ = 𝑎𝑎𝑖𝑖𝛹𝛹𝑖𝑖 + 𝑎𝑎𝑓𝑓𝛹𝛹𝑓𝑓

As a result, we obtain the transition probability P which can be listed as follows:

𝑃𝑃~ 𝐸𝐸
2
� 𝜇⃗𝜇𝑖𝑖𝑖𝑖

2

𝑃𝑃 has its maximum at resonance, i.e. when 𝜔𝜔𝑖𝑖𝑖𝑖 = 1
ℏ
𝐸𝐸𝑓𝑓 − 𝐸𝐸𝑖𝑖 , meaning that energy is conserved.

𝜇⃗𝜇𝑖𝑖𝑖𝑖 is the transition dipole moment: 

𝜇⃗𝜇𝑖𝑖𝑖𝑖 = �𝜓𝜓𝑓𝑓∗ 𝑒𝑒 � 𝑟𝑟 𝜓𝜓𝑖𝑖 𝑑𝑑3𝑟𝑟 𝜓𝜓𝑖𝑖 and 𝜓𝜓𝑓𝑓 are the wave functions of the initial and final state, respectively. The 
wave functions include the spatial, vibrational and spin function.

The probability to find the system in the final state 𝛹𝛹𝑓𝑓 after a time t is 

proportional to 𝑎𝑎𝑓𝑓
2

with
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The transition dipole moment
We see that 𝜇⃗𝜇𝑖𝑖𝑖𝑖 contains the pertinent physical information about the transition, which could not be extracted from the classical model:

 Strength of the transition

 Polarization dependence

 Rate of the transition

 Selection rules: Symmetry, angular momentum, Franck Condon overlap, spin

The selection rules for a single electron system are:

Angular momentum: Δ𝑙𝑙 = ±1
Magnetic quantum number: Δ𝑚𝑚 = 0, ±1
Spin: Δ𝑠𝑠 = 0

Allowed transitions for the hydrogen atom

An illustration of zero and non-zero transition dipole moment (only the spatial
wave function is considered):

𝑥𝑥

𝜓𝜓𝑖𝑖

𝜓𝜓𝑓𝑓

𝜇⃗𝜇𝑖𝑖𝑖𝑖 = � 𝜓𝜓𝑓𝑓 𝑒𝑒 � 𝑥𝑥 𝜓𝜓𝑖𝑖 𝑑𝑑𝑑𝑑 = 0

𝑥𝑥

𝜓𝜓𝑖𝑖
𝜓𝜓𝑓𝑓

𝜇⃗𝜇𝑖𝑖𝑖𝑖 = � 𝜓𝜓𝑓𝑓 𝑒𝑒 � 𝑥𝑥 𝜓𝜓𝑖𝑖 𝑑𝑑𝑑𝑑 ≠ 0

Final note: since the total angular momentum L must be conserved, the photon must
carry an angular momentum of ±1 � ℏ (this can be understood as right handed and left handed polarization).
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The laws of radiation – Einstein coefficients
In the following we will follow arguments in a non-chronological way. From the previous discussion, we have been able to describe the strength of 
the absorption transition by the transition dipole moment 𝜇⃗𝜇𝑖𝑖𝑖𝑖

2
.  By simple arguments, we see that the transition from the excited state to the 

ground state is governed by precisely the same transition dipole moment 𝜇⃗𝜇𝑓𝑓𝑓𝑓
2 = 𝜇⃗𝜇𝑖𝑖𝑖𝑖

2
. This also means that the “downwards” transition 

(=stimulated emission) is as likely as the upward transition (absorption) if we start from the excited state.  
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Einstein (1917) used both a quantum mechanical and thermodynamical argument to derive 
the laws of radiation. For this purpose a two level system is placed in equilibrium with the 
radiation field of a black body 𝜌𝜌 (𝜌𝜌(𝜐𝜐)d𝜐𝜐 is the radiation density in the range 𝜐𝜐 to 𝜐𝜐+ d𝜐𝜐 ).

First let us define the transition rate 𝑤𝑤 for (stimulated) absorption: 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝐵𝐵𝑖𝑖𝑖𝑖 � 𝜌𝜌(𝜐𝜐𝑖𝑖𝑖𝑖)
As indicated in the figure to the right, we can similarly express
the rate for stimulated emission: 𝑤𝑤𝑓𝑓𝑓𝑓 = 𝐵𝐵𝑓𝑓𝑓𝑓 � 𝜌𝜌(𝜐𝜐𝑖𝑖𝑖𝑖)

To invoke a thermodynamical (equilibrium) argument, we need to look at the population 𝑁𝑁𝑖𝑖
and 𝑁𝑁𝑓𝑓 of the states with energies 𝐸𝐸𝑖𝑖 and 𝐸𝐸𝑓𝑓, respectively. The rate W of change of the 
populations then is: 

𝜐𝜐𝑖𝑖𝑖𝑖 =
𝜔𝜔𝑖𝑖𝑖𝑖

2𝜋𝜋 =
1
ℎ 𝐸𝐸𝑓𝑓 − 𝐸𝐸𝑖𝑖

𝑊𝑊𝑖𝑖𝑖𝑖 = 𝐵𝐵𝑖𝑖𝑖𝑖 � 𝜌𝜌(𝜐𝜐𝑖𝑖𝑖𝑖) � 𝑁𝑁𝑖𝑖 and  𝑊𝑊𝑓𝑓𝑓𝑓 = 𝐵𝐵𝑓𝑓𝑓𝑓 � 𝜌𝜌(𝜐𝜐𝑖𝑖𝑖𝑖) � 𝑁𝑁𝑓𝑓

When only these two processes (see figure to the right) are in equilibrium, the following condition must hold:

𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑓𝑓𝑓𝑓 or         𝐵𝐵𝑖𝑖𝑖𝑖 � 𝜌𝜌(𝜐𝜐𝑖𝑖𝑖𝑖) � 𝑁𝑁𝑖𝑖 = 𝐵𝐵𝑓𝑓𝑓𝑓 � 𝜌𝜌(𝜐𝜐𝑖𝑖𝑖𝑖) � 𝑁𝑁𝑓𝑓 and therefore: 

𝐵𝐵𝑖𝑖𝑖𝑖
𝐵𝐵𝑓𝑓𝑓𝑓

= 𝑁𝑁𝑓𝑓
𝑁𝑁𝑖𝑖

= 𝑒𝑒−
(𝐸𝐸𝑓𝑓−𝐸𝐸𝑖𝑖)

𝑘𝑘𝑘𝑘 = 𝑒𝑒−
ℎ𝜐𝜐𝑖𝑖𝑖𝑖
𝑘𝑘𝑘𝑘 according to the Boltzmann distribution. Since 𝐵𝐵𝑖𝑖𝑖𝑖 and 𝐵𝐵𝑓𝑓𝑓𝑓 are rate constants, this leads to a contradiction.  
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To resolve this inconsistency, a third process is introduced to the equilibrium of radiation: spontaneous emission with rate constant 𝐴𝐴𝑓𝑓𝑓𝑓: 
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𝑓𝑓𝑓𝑓

Therefore  𝑤𝑤𝑓𝑓𝑓𝑓 = 𝐵𝐵𝑓𝑓𝑓𝑓 � 𝜌𝜌(𝜐𝜐𝑖𝑖𝑖𝑖)+𝐴𝐴𝑓𝑓𝑓𝑓 and  𝑊𝑊𝑓𝑓𝑓𝑓 = 𝑁𝑁𝑓𝑓[𝐵𝐵𝑓𝑓𝑓𝑓� 𝜌𝜌(𝜐𝜐𝑖𝑖𝑖𝑖)+𝐴𝐴𝑓𝑓𝑓𝑓]. Again we can write the condition for thermodynamical equilibrium:

𝐵𝐵𝑖𝑖𝑖𝑖…Einstein coefficient of stimulated absorption
𝐵𝐵𝑓𝑓𝑓𝑓…Einstein coefficient of stimulated emission
𝐴𝐴𝑓𝑓𝑓𝑓…Einstein coefficient of spontaneous emission

𝐵𝐵𝑖𝑖𝑖𝑖 � 𝜌𝜌(𝜐𝜐𝑖𝑖𝑖𝑖) � 𝑁𝑁𝑖𝑖 = (𝐵𝐵𝑓𝑓𝑓𝑓� 𝜌𝜌(𝜐𝜐𝑖𝑖𝑖𝑖) + 𝐴𝐴𝑓𝑓𝑓𝑓) � 𝑁𝑁𝑓𝑓.  Solving for the radiation density 𝜌𝜌(𝜐𝜐𝑖𝑖𝑖𝑖), we obtain:

𝜌𝜌(𝜐𝜐𝑖𝑖𝑖𝑖) =
𝐴𝐴𝑓𝑓𝑓𝑓
𝐵𝐵𝑖𝑖𝑖𝑖

�
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𝐵𝐵𝑖𝑖𝑓𝑓

=
𝐴𝐴𝑓𝑓𝑓𝑓
𝐵𝐵𝑖𝑖𝑖𝑖

�
1

𝑒𝑒
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𝑘𝑘𝑘𝑘 −

𝐵𝐵𝑓𝑓𝑓𝑓
𝐵𝐵𝑖𝑖𝑖𝑖

This relation must correspond 
to the Planck distribution:  

𝜌𝜌(𝜐𝜐𝑖𝑖𝑖𝑖) =
8𝜋𝜋𝜋𝜐𝜐𝑖𝑖𝑖𝑖3

𝑐𝑐3 �
1

𝑒𝑒
ℎ𝜐𝜐𝑖𝑖𝑖𝑖
𝑘𝑘𝑘𝑘 − 1

Comparison of the above two expressions show that 𝐵𝐵𝑖𝑖𝑖𝑖 = 𝐵𝐵𝑓𝑓𝑓𝑓 (which confirms the arguments invoking 𝜇⃗𝜇𝑓𝑓𝑓𝑓
2 = 𝜇⃗𝜇𝑖𝑖𝑖𝑖

2
). Furthermore we obtain a 

relation between the coefficients of stimulated and spontaneous emission:  

𝐴𝐴𝑓𝑓𝑓𝑓 =
8𝜋𝜋𝜋𝜐𝜐𝑖𝑖𝑖𝑖3

𝑐𝑐3 � 𝐵𝐵𝑖𝑖𝑖𝑖 The relative importance of spontaneous emission grows as the cube of the transition frequency. 
Spontaneous emission is actually what we call fluorescence.

(1)
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Relating the Einstein coefficients to the transition dipole moment
It can be sown that the coefficient of stimulated absorption 𝐵𝐵𝑖𝑖𝑖𝑖 can be related to 𝜇⃗𝜇𝑖𝑖𝑖𝑖

2:

𝐵𝐵𝑖𝑖𝑖𝑖 =
𝜇𝜇𝑖𝑖𝑖𝑖

2

6𝜀𝜀0ℏ2
(2)          and with (1), we obtain:      𝐴𝐴𝑓𝑓𝑖𝑖 =

8𝜋𝜋2𝜐𝜐𝑖𝑖𝑖𝑖3

3𝜀𝜀0ℏ𝑐𝑐3
𝜇⃗𝜇𝑖𝑖𝑖𝑖

2

Summarizin,g we can state for absorption:  𝛼𝛼 = 4𝜋𝜋
𝜆𝜆
𝑘𝑘 ~ 𝐵𝐵𝑖𝑖𝑖𝑖 ~ 𝜇⃗𝜇𝑖𝑖𝑖𝑖

2
and for the fluorescence Quantum yield :  𝜙𝜙𝑓𝑓 ~ 𝐴𝐴𝑓𝑓𝑓𝑓 ~ 𝐵𝐵𝑖𝑖𝑖𝑖 ~ 𝜇⃗𝜇𝑖𝑖𝑖𝑖

2

Final remarks on the line shape
In quantum mechanics the natural linewidth (smallest possible) of a system is related by the Heisenberg uncertainty principle: Δ𝐸𝐸 � Δ𝑡𝑡 ≥ ⁄ℏ 2. Taking 
the lifetime Δ𝑡𝑡 = 𝜏𝜏 (the lifetime of the resonance) we can relate the transition linewidth as follows: 

Δ𝜔𝜔 � 𝜏𝜏 ≥ ⁄1 2 or Δ𝜔𝜔 = ⁄1 2𝜏𝜏 and with 𝜏𝜏 = �1 𝐴𝐴𝑓𝑓𝑓𝑓 one obtains Δ𝜔𝜔 = �𝐴𝐴𝑓𝑓𝑓𝑓
2

For a typical natural radiative lifetime of  10−9𝑠𝑠 one would obtain a natural line width of Δ𝜔𝜔 = 5 � 108 Hz, which is extremely narrow compared to the 
resonance frequency (𝜔𝜔0 or  𝜈𝜈𝑖𝑖𝑖𝑖).
Let us compare this result to the classical Lorentz oscillator. Here we have Δ𝜔𝜔 = Γ. For metals, typical values of Γ = 1013 to 1014 Hz one obtains a 
linewidth of Δ𝜔𝜔 ≈ 1014 Hz which is much broader and requires some interpretation. However, we can conclude that the analogy between classical 
damped harmonic oscillators and lifetime of an excited state indeed holds for optical transitions. As we find from the Heisenberg uncertainty principle, 
𝜏𝜏 = ⁄1 2Γ holds, which is of the similar order of magnitude as for classical damped oscillators.

Note: The line shape of a transition or an absorption band is always significantly broadened, be it in the gas phase, in solution or even more in the 
solid. The broadening is due to collisions and to the Doppler effect. In solution and in the solid we get a substantial inhomogeneous broadening due to 
the different environments of the oscillator (chromophore) as well as from interatomic/intermolecular interactions.  The width of the spectra actually 
could be fitted by a single Lorentz oscillator (or multiple oscillators), but in this case the obtained relaxation time no longer corresponds to the natural 
lifetime 𝜏𝜏.
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M. Sapozhnikov Phys. Scr. 93 033002 (2018)

Spectral hole burning in the inhomogeneous 0–0 
absorption band of protoporphyrin IX acid dication in 1 N 
HCl solution in ethanol at 5 K

Single molecule fluorescence excitation spectrum of
pentacene in p-terphenyl at 1.5K (zero detuning = 
592.546 nm)

W.P. Ambrose, W.E. Moerner, Nature 349, 225–227 (1991)
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